Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 43(2): 32, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38195772

RESUMO

KEY MESSAGE: The creeping bentgrass small heat shock protein AsHSP26.2 positively regulates plant growth and is a novel candidate for use in crop genetic engineering for enhanced biomass production and grain yield. Small heat shock proteins (sHSPs), a family of proteins with high level of diversity, significantly influence plant stress tolerance and plant development. We have cloned a creeping bentgrass chloroplast-localized sHSP gene, AsHSP26.2 responsive to IAA, GA and 6-BA stimulation. Transgenic creeping bentgrass overexpressing AsHSP26.2 exhibited significantly enhanced plant growth with increased stolon number and length as well as enlarged leaf blade width and leaf sheath diameters, but inhibited leaf trichomes initiation and development in the abaxial epidermis. These phenotypes are completely opposite to those displayed in the transgenic plants overexpressing AsHSP26.8, another chloroplast sHSP26 isoform that contains additional seven amino acids (AEGQGDG) between the consensus regions III and IV (Sun et al., Plant Cell Environ 44:1769-1787, 2021). Furthermore, AsHSP26.2 overexpression altered phytohormone biosynthesis and signaling transduction, resulting in elevated auxin and gibberellins (GA) accumulation. The results obtained provide novel insights implicating the sHSPs in plant growth and development regulation, and strongly suggest AsHSP26.2 to be a novel candidate for use in crop genetic engineering for enhanced plant biomass production and grain yield.


Assuntos
Agrostis , Proteínas de Choque Térmico Pequenas , Agrostis/genética , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas , Cloroplastos , Grão Comestível , Proteínas de Choque Térmico Pequenas/genética
2.
Physiol Plant ; 175(5): e14004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882287

RESUMO

Rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase (ACCd) that inhibits ethylene production may mitigate stress damages. The objectives of this study were to examine whether a novel strain of ACCd-producing bacteria, Paraburkholderia aspalathi "WSF23," promotes plant tolerance to drought stress and post-stress recovery and determine changes in metabolic profiles in leaves and roots associated with the positive ACCd-bacteria effects in cool-season perennial grass species. Creeping bentgrass (Agrostis Stolonifera L. cv. "Penncross") plants were inoculated with P. aspalathi "WSF23" and exposed to drought by withholding irrigation for 35 days, followed by re-watering for 15 days in growth chambers. Inoculated plants demonstrated increased turf quality, canopy density, and root growth during drought stress and more rapid re-growth upon re-watering. Metabolomic analysis demonstrated that inoculation with P. aspalathi "WSF 23" increased the content of metabolites in the metabolic pathways related to stress defense, including osmoregulation, cell wall stability, and antioxidant protection in both leaves and roots, as well as nitrogen metabolism in roots of creeping bentgrass exposed to drought stress. The promotion of post-stress recovery by P. aspalathi "WSF 23" was mainly associated with enhanced carbohydrate and pyrimidine metabolism and zeatin biosynthesis pathways in leaves and increased carbohydrates, biosynthesis of DNA and proteins, cellular metabolism, and TCA cycle activity in roots. These results provide insights into the metabolic pathways regulated by "WSF23," with the PGPR conferring improvements in drought stress tolerance and post-drought recovery in a perennial grass species.


Assuntos
Agrostis , Agrostis/metabolismo , Resistência à Seca , Antioxidantes/metabolismo , Poaceae/metabolismo , Secas , Folhas de Planta/metabolismo , Estresse Fisiológico/genética
3.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37762612

RESUMO

Aluminum (Al) toxicity is a major limiting factor for plant growth and crop production in acidic soils. This study aims to investigate the effects of γ-aminobutyric acid (GABA) priming on mitigating acid-Al toxicity to creeping bentgrass (Agrostis stolonifera) associated with changes in plant growth, photosynthetic parameters, antioxidant defense, key metabolites, and genes related to organic acids metabolism. Thirty-seven-old plants were primed with or without 0.5 mM GABA for three days and then subjected to acid-Al stress (5 mmol/L AlCl3·6H2O, pH 4.35) for fifteen days. The results showed that acid-Al stress significantly increased the accumulation of Al and also restricted aboveground and underground growths, photosynthesis, photochemical efficiency, and osmotic balance, which could be effectively alleviated by GABA priming. The application of GABA significantly activated antioxidant enzymes, including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, to reduce oxidative damage to cells under acid-Al stress. Metabolomics analysis demonstrated that the GABA pretreatment significantly induced the accumulation of many metabolites such as quinic acid, pyruvic acid, shikimic acid, glycine, threonine, erythrose, glucose-6-phosphate, galactose, kestose, threitol, ribitol, glycerol, putrescine, galactinol, and myo-inositol associated with osmotic, antioxidant, and metabolic homeostases under acid-Al stress. In addition, the GABA priming significantly up-regulated genes related to the transportation of malic acid and citric acid in leaves in response to acid-Al stress. Current findings indicated GABA-induced tolerance to acid-Al stress in relation to scavenging of reactive oxygen species, osmotic adjustment, and accumulation and transport of organic metabolites in leaves. Exogenous GABA priming could improve the phytoremediation potential of perennial creeping bentgrass for the restoration of Al-contaminated soils.


Assuntos
Agrostis , Alumínio/toxicidade , Antioxidantes/farmacologia , Homeostase , Osmose
4.
BMC Genomics ; 24(1): 466, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596544

RESUMO

BACKGROUND: Plants possess mitochondrial genomes that are large and complex compared to animals. Despite their size, plant mitochondrial genomes do not contain significantly more genes than their animal counterparts. Studies into the sequence and structure of plant mitochondrial genomes heavily imply that the main mechanism driving replication of plant mtDNA, and offer valuable insights into plant evolution, energy production, and environmental adaptation. RESULTS: This study presents the first comprehensive analysis of Agrostis stolonifera's mitochondrial genome, characterized by a branched structure comprising three contiguous chromosomes, totaling 560,800 bp with a GC content of 44.07%. Annotations reveal 33 unique protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The predominant codons for alanine and glutamine are GCU and CAA, respectively, while cysteine and phenylalanine exhibit weaker codon usage biases. The mitogenome contains 73, 34, and 23 simple sequence repeats (SSRs) on chromosomes 1, 2, and 3, respectively. Chromosome 1 exhibits the most frequent A-repeat monomeric SSR, whereas chromosome 2 displays the most common U-repeat monomeric SSR. DNA transformation analysis identifies 48 homologous fragments between the mitogenome and chloroplast genome, representing 3.41% of the mitogenome's total length. The PREP suite detects 460 C-U RNA editing events across 33 mitochondrial PCGs, with the highest count in the ccmFn gene and the lowest in the rps7 gene. Phylogenetic analysis confirms A. stolonifera's placement within the Pooideae subfamily, showing a close relationship to Lolium perenne, consistent with the APG IV classification system. Numerous homologous co-linear blocks are observed in A. stolonifera's mitogenomes and those of related species, while certain regions lack homology. CONCLUSIONS: The unique features and complexities of the A. stolonifera mitochondrial genome, along with its similarities and differences to related species, provide valuable insights into plant evolution, energy production, and environmental adaptation. The findings from this study significantly contribute to the growing body of knowledge on plant mitochondrial genomes and their role in plant biology.


Assuntos
Agrostis , Genoma Mitocondrial , Animais , Uso do Códon , Filogenia , Edição de RNA
5.
Plant Dis ; 107(8): 2346-2351, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36627801

RESUMO

Biochar, compost, and biological control agents can suppress pathogens on their own; however, their reliability and efficacy are not as acceptable as synthetic fungicides commonly used to suppress pathogens. A multiyear field study was initiated to evaluate combinations of monthly applications of a biochar compost mixture and weekly or biweekly Bacillus subtilis QST713 applications for their ability to suppress foliar pathogens on a creeping bentgrass (Agrostis stolonifera L.) fairway and to measure their impact on strain QST713 establishment. Disease severity and turfgrass quality were measured every 14 days throughout the growing season. Populations of strain QST713 were quantified by quantitative PCR analysis on DNA extracted from foliage samples collected throughout the trial. Biochar compost mixture applications increased turfgrass quality in both years of the study and reduced dollar spot (Clarireedia jacksonii Salgado-Salazar) severity in 2021. Weekly strain QST713 applications reduced copper spot (Gloeocercospora sorghi D. C. Bain & Edgerton) severity compared with biweekly applications and the nontreated control in 2020, yet monthly biochar compost mixture with weekly strain QST713 applications completely suppressed copper spot in 2021. Populations of strain QST713 were highest in weekly treated plots, and monthly biochar compost mixture applications did not affect strain QST713 establishment. Although there was not an interaction between biochar compost mixture and strain QST713 applications, implementing both in a season-long program will benefit turfgrass health and reduce disease severity.


Assuntos
Agrostis , Compostagem , Cobre , Reprodutibilidade dos Testes
6.
Plant Dis ; 107(3): 929-934, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36265142

RESUMO

Dollar spot (DS) is a destructive fungal disease impacting almost all warm- and cool-season turfgrasses worldwide. Multiple fungal species in the genus Clarireedia are causal agents of DS. Here, we present whole-genome assemblies of nine fungal isolates in the genus Clarireedia, including four species (C. paspali, C. hainanense, C. jacksonii, and C. monteithiana) causing DS on seashore paspalum (Paspalum vaginatum Sw.), creeping bentgrass (Agrostis stolonifera L.), and Kentucky bluegrass (Poa pratensis L.) in China. This work provides valuable baseline genomic data to support further research and management of DS pathogens on turfgrasses.


Assuntos
Agrostis , Ascomicetos , Poa , Ascomicetos/genética , Agrostis/genética , Agrostis/microbiologia , Genômica , China
7.
PLoS One ; 17(9): e0271236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36054190

RESUMO

Turfgrass management relies on frequent watering events from natural precipitation or irrigation. However, most irrigation scheduling strategies in turfgrass ignore the magnitude of canopy interception. Interception is the process by which precipitation or irrigation water is intercepted by and evaporated from plant canopies or plant residue. The objective of this study was to quantify the magnitude of precipitation interception and throughfall in 'Meyer' zoysiagrass (Zoysia japonica L.) and '007' creeping bentgrass (Agrostis stolonifera L.). We used a new method consisting of co-located pluviometers with and without circular turfgrass patches to measure interception and throughfall. The resulting dataset includes 15 storms and 25 individual rainfall events ranging in precipitation totals from 0.3 mm to 42.4 mm throughout the research study. Throughfall amount resulted in a strong (r = 0.98) positive linear relationship with precipitation totals. On average, zoysiagrass and creeping bentgrass canopies intercepted a minimum of 4.4 mm before throughfall occurred. This indicates that, on average, no precipitation reaches the soil surface for precipitation events <4.4 mm. After the point of throughfall, 16% of each additional millimeter of precipitation or irrigation is lost due to interception. Nearly, 45% of the area of the contiguous U.S. could result in >50% of the annual precipitation being intercepted by canopies of zoysiagrass and bentgrass. This study provides detailed insights to understanding the interception dynamics in turfgrass and highlights the inefficient nature of small precipitation and irrigation events in turfgrass systems.


Assuntos
Agrostis , Chuva , Poaceae , Água , Movimentos da Água
8.
Int J Mol Sci ; 23(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36012757

RESUMO

Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl transferase (HCT) is considered to be an essential enzyme for regulating the biosynthesis and composition of lignin. To investigate the properties and function of ZjHCT4, the ZjHCT4 gene was cloned from Zoysia japonica with a completed coding sequence of 1284-bp in length, encoding 428 amino acids. The ZjHCT4 gene promoter has several methyl jasmonate (MeJA) response elements. According to analysis of expression patterns, it was up-regulated by MeJA, GA3 (Gibberellin), and SA (Salicylic acid), and down-regulated by ABA (Abscisic acid). Ectopic ZjHCT4 expression in creeping bentgrass causes excessive plant elongation. In addition, the content of G-lingnin and H-lingnin fell in transgenic plants, whereas the level of S-lingnin increased, resulting in a considerable rise in the S/G unit ratio. Analysis of the expression levels of lignin-related genes revealed that the ectopic expression of ZjHCT4 altered the expression levels of a number of genes involved in the lignin synthesis pathway. Simultaneously, MeJA, SA, GA3, IAA, BR (Brassinosteroid), and other hormones were dramatically enhanced in transgenic plants relative to control plants, whereas ABA concentration was significantly decreased. Expression of ZjHCT4 impacted lignin composition and plant growth via altering the phenylpropionic acid metabolic pathway and hormone response, as revealed by transcriptome analysis. HCTs may influence plant lignin composition and plant development by altering hormone content. These findings contributed to a deeper comprehension of the lignin synthesis pathway and set the stage for further investigation and application of the HCTs gene.


Assuntos
Agrostis , Lignina , Agrostis/genética , Coenzima A/metabolismo , Regulação da Expressão Gênica de Plantas , Hormônios/metabolismo , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Quínico/metabolismo , Ácido Chiquímico/metabolismo
9.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682725

RESUMO

The NYC-like (NOL) enzyme is considered as an essential enzyme for chlorophyll b degradation, which catalyzes the formation of 7-hydroxymethyl chlorophyll a from chlorophyll b. The ZjNOL gene was cloned from Zoysia japonica with a completed coding sequence of 981-bp in length, encoding 326 amino acids. ZjNOL was localized on the stroma side of the thylakoid membrane, and co-localized with ZjNYC in the chloroplasts. Multiple photoregulatory elements and hormone regulatory elements were identified in the promoter region of the ZjNOL gene, and the expression level of the ZjNOL gene was dramatically up-regulated in senescence leaves, which were regulated by a variety of plant hormones. ZjNOL's ectopic expression in creeping bentgrass produced yellow leaves, thicker cortex, and smaller vascular column cells. Additionally, transgenic plants exhibited morphological alterations in their chloroplast structure, and the number of grana and thylakoids per grana stack reduced dramatically. Transgenic plants also had a lower photosynthetic rate and Fm/Fv than the control. The transgenic plants displayed a decreased chlorophyll content and a greater rate of ion leakage. The properties and activities of ZjNOL will serve as a foundation for future research into gene functions and regulatory processes.


Assuntos
Agrostis , Agrostis/genética , Oxirredutases do Álcool , Clorofila/metabolismo , Clorofila A/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Poaceae/genética
10.
BMC Plant Biol ; 22(1): 227, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501681

RESUMO

BACKGROUND: Creeping bentgrass (Agrostis soionifera) is a perennial grass of Gramineae, belonging to cold season turfgrass, but has poor disease resistance. Up to now, little is known about the induced systemic resistance (ISR) mechanism, especially the relevant functional proteins, which is important to disease resistance of turfgrass. Achieving more information of proteins of infected creeping bentgrass is helpful to understand the ISR mechanism. RESULTS: With BDO treatment, creeping bentgrass seedlings were grown, and the ISR response was induced by infecting Rhizoctonia solani. High-quality protein sequences of creeping bentgrass seedlings were obtained. Some of protein sequences were functionally annotated according to the database alignment while a large part of the obtained protein sequences was left non-annotated. To treat the non-annotated sequences, a prediction model based on convolutional neural network was established with the dataset from Uniport database in three domains to acquire good performance, especially the higher false positive control rate. With established model, the non-annotated protein sequences of creeping bentgrass were analyzed to annotate proteins relevant to disease-resistance response and signal transduction. CONCLUSIONS: The prediction model based on convolutional neural network was successfully applied to select good candidates of the proteins with functions relevant to the ISR mechanism from the protein sequences which cannot be annotated by database alignment. The waste of sequence data can be avoided, and research time and labor will be saved in further research of protein of creeping bentgrass by molecular biology technology. It also provides reference for other sequence analysis of turfgrass disease-resistance research.


Assuntos
Agrostis , Agrostis/genética , Sequência de Aminoácidos , Resistência à Doença , Redes Neurais de Computação , Poaceae/genética , Plântula
11.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562863

RESUMO

Soil salinization has become a serious challenge to modern agriculture worldwide. The purpose of the study was to reveal salt tolerance induced by spermine (Spm) associated with alterations in water and redox homeostasis, photosynthetic performance, and global metabolites reprogramming based on analyses of physiological responses and metabolomics in creeping bentgrass (Agrostis stolonifera). Plants pretreated with or without 0.5 mM Spm were subjected to salt stress induced by NaCl for 25 days in controlled growth chambers. Results showed that a prolonged period of salt stress caused a great deal of sodium (Na) accumulation, water loss, photoinhibition, and oxidative damage to plants. However, exogenous application of Spm significantly improved endogenous spermidine (Spd) and Spm contents, followed by significant enhancement of osmotic adjustment (OA), photosynthesis, and antioxidant capacity in leaves under salt stress. The Spm inhibited salt-induced Na accumulation but did not affect potassium (K) content. The analysis of metabolomics demonstrated that the Spm increased intermediate metabolites of γ-aminobutyric acid (GABA) shunt (GABA, glutamic acid, and alanine) and tricarboxylic acid (TCA) cycle (aconitic acid) under salt stress. In addition, the Spm also up-regulated the accumulation of multiple amino acids (glutamine, valine, isoleucine, methionine, serine, lysine, tyrosine, phenylalanine, and tryptophan), sugars (mannose, fructose, sucrose-6-phosphate, tagatose, and cellobiose), organic acid (gallic acid), and other metabolites (glycerol) in response to salt stress. These metabolites played important roles in OA, energy metabolism, signal transduction, and antioxidant defense under salt stress. More importantly, the Spm enhanced GABA shunt and the TCA cycle for energy supply in leaves. Current findings provide new evidence about the regulatory roles of the Spm in alleviating salt damage to plants associated with global metabolites reprogramming and metabolic homeostasis.


Assuntos
Agrostis , Agrostis/fisiologia , Antioxidantes/metabolismo , Tolerância ao Sal , Espermina/metabolismo , Água/metabolismo , Ácido gama-Aminobutírico/metabolismo
12.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269921

RESUMO

Due to increased global warming and climate change, drought has become a serious threat to horticultural crop cultivation and management. The purpose of this study was to investigate the effect of spermine (Spm) pretreatment on metabolic alterations of polyamine (PAs), γ-aminobutyric acid (GABA), proline (Pro), and nitrogen associated with drought tolerance in creeping bentgrass (Agrostis stolonifera). The results showed that drought tolerance of creeping bentgrass could be significantly improved by the Spm pretreatment, as demonstrated by the maintenance of less chlorophyll loss and higher photosynthesis, gas exchange, water use efficiency, and cell membrane stability. The Spm pretreatment further increased drought-induced accumulation of endogenous PAs, putrescine, spermidine, and Spm, and also enhanced PAs metabolism through improving arginine decarboxylases, ornithine decarboxylase, S-adenosylmethionine decarboxylase, and polyamine oxidase activities during drought stress. In addition, the Spm application not only significantly improved endogenous GABA content, glutamate content, activities of glutamate decarboxylase and α-ketoglutarase, but also alleviated decline in nitrite nitrogen content, nitrate reductase, glutamine synthetase, glutamate synthetase, and GABA aminotransferase activities under drought stress. The Spm-pretreated creeping bentgrass exhibited significantly lower ammonia nitrogen content and nitrite reductase activity as well as higher glutamate dehydrogenase activity than non-pretreated plants in response to drought stress. These results indicated beneficial roles of the Spm on regulating GABA and nitrogen metabolism contributing towards better maintenance of Tricarboxylic acid (TCA) cycle in creeping bentgrass. Interestingly, the Spm-enhanced Pro metabolism rather than more Pro accumulation could be the key regulatory mechanism for drought tolerance in creeping bentgrass. Current findings provide a comprehensive understanding of PAs interaction with other metabolic pathways to regulate drought tolerance in grass species.


Assuntos
Agrostis , Agrostis/fisiologia , Secas , Ácido Glutâmico/metabolismo , Nitrogênio/metabolismo , Poliaminas/metabolismo , Prolina/metabolismo , Espermina/metabolismo , Ácido gama-Aminobutírico/metabolismo
13.
Environ Sci Pollut Res Int ; 29(17): 25965-25969, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35156162

RESUMO

Cell selection was used to obtain copper-resistant plants. Developed technologies for obtaining copper-resistant plants Agrostis stolonifera and Chrysanthemum carinatum can be applied to other plant species. We obtained copper-resistant plants Festuca rubra, Brachycome iberidifolia and Linum perenne. The concept of obtaining plants resistant to copper has been developed. This concept consists of two methods. The first method is applicable when calli is highly sensitive to copper. The second method is applicable when calli are moderately sensitive to copper.


Assuntos
Agrostis , Festuca , Cobre/farmacologia , Plantas
15.
Environ Sci Pollut Res Int ; 29(16): 22947-22951, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34508315

RESUMO

Deicing reagents are priority soil pollutants in urban ecosystems. Sodium chloride is one of the priority deicing reagents. Sodium chloride is limiting the spread of lawn grass. We first showed the possibility of using environmental biotechnology in urban greening to obtain lawn grasses tolerant of sodium chloride. We have developed a cell selection technology to obtain salt-tolerant lawn grasses. A cell selection scheme with 1% sodium chloride was used. Most of the tested regenerants were more tolerant to NaCl than original plants. The descendants of the studied regenerants demonstrated the preservation of salt resistance. Most of the descendants of the regenerants Agrostis stolonifera retained high decorative qualities under salinity conditions. The tolerance remained in the next five generations. The descendants of the most salt-tolerant clones Agrostis stolonifera demonstrated resistance to 1% sodium chloride concentration in soil. These plants can serve as the basis for the creation of new salt-tolerant varieties.


Assuntos
Agrostis , Poaceae , Ecossistema , Indicadores e Reagentes , Salinidade , Plantas Tolerantes a Sal
16.
Plant Dis ; 106(2): 641-647, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34633241

RESUMO

Pythium root rot (PRR) is a disease that can rapidly devastate large swaths of golf course putting greens, with little recourse once symptoms appear. Golf courses routinely apply preventive fungicides for root diseases, which may alter the rhizosphere microbiome, leading to unintended effects on plant health. A multiyear field trial was initiated on a 'T-1' creeping bentgrass (Agrostis stolonifera L. cultivar T-1) putting green in College Park, Maryland to evaluate preventive PRR management for disease suppression and effects on rhizosphere bacterial communities. Fungicides commonly used to prevent PRR and a biological fungicide were repeatedly applied to experimental plots throughout the growing season. Rhizosphere samples were collected twice annually from each plot for evaluation of rhizosphere bacterial communities through amplicon sequencing and monitoring of biological control organism populations via quantitative PCR. Cyazofamid was the only treatment to suppress PRR in both years compared with the control. Fosetyl-Al on a 14-day interval and Bacillus subtilis QST713 also reduced PRR severity in 2019 compared with the nontreated control. Treatments did not significantly affect bacterial diversity or relative abundances of bacterial classes; however, seasonal environmental changes did. Repeated rhizosphere-targeted applications of B. subtilis QST713 appear to have established the bacterium into the rhizosphere, as populations increased between samples, even after applications stopped. These findings suggest that QST713 may reduce pathogen pressure when repeatedly applied and can reduce fungicide usage during periods of low PRR pressure.


Assuntos
Agrostis , Fungicidas Industriais , Pythium , Agrostis/microbiologia , Bactérias , Fungicidas Industriais/farmacologia , Rizosfera
17.
PLoS One ; 16(9): e0257173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506557

RESUMO

Recent studies have revealed presence of fungus-originated genes in genomes of cool-season grasses, suggesting occurrence of multiple ancestral gene transfer events between the two distant lineages. The current article describes identification of glucanase-like and monooxygenase-like genes from creeping bent grass, as lateral gene transfer candidates. An in silico analysis suggested presence of the glucanase-like gene in Agrostis, Deyeuxia, and Polypogon genera, but not in other species belonging to the clade 1 of the Poeae tribe. Similarly, the monooxygenase-like gene was confined to Agrostis and Deyeuxia genera. A consistent result was obtained from PCR-based screening. The glucanase-like gene was revealed to be ubiquitously expressed in young seedlings of creeping bent grass. Although expression of the monooxygenase-like gene was suggested in plant tissues, the levels were considerably lower than those of the glucanase-like gene. A phylogenetic analysis revealed close relationships of the two genes between the corresponding genes in fungal endophyte species of the Epichloë genus, suggesting that the genes originated from the Epichloë lineage.


Assuntos
Agrostis/enzimologia , Agrostis/genética , Celulases/genética , Fungos/enzimologia , Genes de Plantas , Oxigenases de Função Mista/genética , Sequência de Aminoácidos , Celulases/química , Celulases/metabolismo , Regulação da Expressão Gênica de Plantas , Transferência Genética Horizontal , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Filogenia
18.
Molecules ; 26(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34500767

RESUMO

Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood in plants, especially in grass species. The aim of this study was to investigate whether the CTS could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were pretreated exogenously with or without CTS (0.1 g L-1) before being exposed to normal (23/18 °C) or high-temperature (38/33 °C) conditions for 15 days. Heat stress induced detrimental effects, including declines in leaf relative water content and photochemical efficiency, but significantly increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism, and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence and enhancing photosynthetic performance under heat stress. In addition, the foliar application of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of CTS-regulated thermotolerance associated with other metabolic pathways still need to be further studied in grass species.


Assuntos
Agrostis/efeitos dos fármacos , Antioxidantes/farmacologia , Quitosana/farmacologia , Clorofila/metabolismo , Temperatura Alta , Folhas de Planta/efeitos dos fármacos , Agrostis/metabolismo , Resposta ao Choque Térmico/efeitos dos fármacos , Folhas de Planta/metabolismo
19.
Sci Total Environ ; 791: 148400, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34412406

RESUMO

Metal(loid) soil pollution resulting from mining activities is an important issue that has negative effects on the environment (soil acidification, lack of vegetation, groundwater pollution) and human health (cancer, chronic diseases). In the context of a phytostabilization process for the bioremediation of a mine soil highly contaminated by arsenic (As) and lead (Pb), a pot experiment was set up to study the effect of plant sowing and microbial inoculation on soil properties, metal(loid) (im)mobilization in soil and accumulation in plant, and plant growth. For this, mine soil was sown with endemic metallicolous Agrostis seeds and/or inoculated with endogenous microbial consortia previously selected for their As and Pb tolerance. Agrostis was able to develop on the contaminated mine soil and immobilized metal(loid)s through metal(loid) accumulation in the roots. Its growth was improved by microbial consortium inoculation. Moreover, microbial consortium inoculation increased soil organic content and electrical conductivity, and led to an increase in soil microbial activities (linked to C and P cycles); however, it also induced a metal(loid) mobilization. In conclusion, microbial consortium inoculation stimulated the growth of endemic Agrostis plants and thus ameliorated the phytostabilization of a former mine soil highly polluted by As and Pb. This study is thus a good example of the benefits of coupling several approaches such as phytostabilization and bioaugmentation for the bioremediation of former mine contaminated sites.


Assuntos
Agrostis , Poluentes do Solo , Biodegradação Ambiental , Humanos , Consórcios Microbianos , Solo , Poluentes do Solo/análise
20.
Mycologia ; 113(5): 956-967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34236950

RESUMO

Leptosphaerulina leaf blight occurs on most turfgrasses. Hitherto, Leptosphaerulina species associated with this disease include L. americana, L. argentinensis, L. australis, and L. trifolii. However, following Koch's postulates, L. australis was confirmed as saprobes but not pathogens, and the other three species have not been tested. The pathogenicity of Leptosphaerulina spp. is still questionable. In this study, we isolated 19 Leptosphaerulina strains from diseased golf turfgrasses in China, and they were identified as L. gaeumannii, L. saccharicola, and a new species, L. macrospora, through multilocus (ITS, 28S, rpb2, and tub2) phylogenetic analyses and morphological observations. Pathogenicity test revealed that the three Leptosphaerulina species identified in this study cannot infect live/healthy turfgrass tissues of Poa pratensis and Agrostis stolonifera and only produced pseudothecia on the dead leaves of stressed seedlings. Considering the results of pathogenicity tests in this and previous studies, we speculate that most Leptosphaerulina species isolated from diseased turfgrass are not pathogens but saprobes. Applying proper management practices to prevent severe turfgrass stress is a key measure to reduce or eliminate the effects of Leptosphaerulina on golf turfgrass.


Assuntos
Agrostis , Ascomicetos , Golfe , Poa , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...